Rproteomics, an implementation of the SMOS model

Simon Lin, Patrick McConnell, Kim Johnson, Jennifer Shoemaker Duke University Medical Center

Ćæ්Bfੳ Proteomics SIG

7-12-04

Draft 7-6-04

Agenda

- Spectrometry-based proteomics
- SMOS
 - a proposed statistical component for MIAPE
- Rproteomics
 - an implementation of SMOS
- Engineering Plan
- Standards of data exchange in proteomics
 - PEDRo (MIAPE), PSI, and MIAME
 - EDRN network: proteomics ontology at JPL

2 of 26

[Next: spectrometry-based]

Raw Data: size and format

- Size: 1.5 Mb each spectrum
- For a small study with 30 samples, 10 fractions for each sample, 10 runs for each fraction:

| Section | Control | Cont

1.5 * 30 * 10 * 10 = 4,500 Mb (on 8 CD-ROM)

7 of 26 [Next: SMOS]

SMOS does not focus on

- LIMS and Database management
- MS identification of protein (database searching and pattern matching)

Statistical Model Of Spectra (SMOS)

- Scope
 - Mass spec proteomics
 - Other spectrum-based profiling methods, such as metabonomic
- Focus
 - Statistical modeling

9 of 26

Statistical Model Of Spectra (SMOS)

- Purpose
 - Standard for statistical data analysis, exchange, comparison, and verification
 - Audit trail for statistical manipulation of spectral data

10 of 26

[Next: What is in SMOS]

Statistical Modeling of Spectra (SMOS)

- Single spectrum
 - Baseline removal, Smoothing etc
- A collection of spectrum
 - Normalization, Aggregation, Alignment etc.
- Raw spectrum -> Extracted Features
 - Peaks, Bins, Principle components
- Extracted Features -> Models
 - Clustering, Classification, and Survival
 - Biomarker discovery

11 of 26

12 of 26

[Next: graphic models of SMOS]

SMOS Integration Model

SMOS: UML model

15 of 26

SMOS: Use case Model

[next: use cases]

Use cases

 Use case: to get a better understanding of the problems and requirements in the scientific domain

#1: Interactive browsing#2: Baseline removal#3: Data transfer

17 of 26

Use case #1: Interactive Browsing

Use case #2: baseline removal

19 of 26

Use Case #3: data transfer

- A biologist has profiling on 30 samples, generated 4,500 Mb of data.
- Wants to transfer the data over the internet to a statistician

Data Compression

- · Faster transfer over the network
- Highly compressible
 - 36% of the original size
- · Compression of scientific raw data
 - a common practice.
- · Standards exist
 - netCDF
 - HDF5

21 of 26

[Next: engineering]

Software Engineering Aspect

- Reuse
- Modular
- V-model

Building on the Experience of Others

- •To avoid re-developing what already developed
 - -Reuse of expertise
 - Reuse of standard designs and algorithms
 - -Reuse of libraries built into languages
 - -Reuse of frameworks

23 of 26

Modular Framework Application Services offered by the framework OUTSIDE INSIDE 24 of 26

What's next

- SMOS: the model
 - Ontology model
 - UML model
- Rproteomics: the implementation
 - Requirement specification
 - Test data sets
 - Implementation and test

Acknowledgement

- Duke Radiology
 - Ned Patz
 - Mike Campa
- Duke Chemistry
 - Mike Fitzgerald

27 of 26

Standards: MIAPE and PSI

- Representation and archival of experimental method and data: MIAPE
 - Formerly known as PEDRo
 - Soon there will be PSI-ML and PSI-DB
 - Modular, extensible model
 - Nature Biotechnology 21: 247, 2003

MIAPE Model

29 of 26

Other Efforts

- Proteomics Database
 - Nature Biotechnology 22: 471, 2004
- Other efforts in the CaBIG Proteomics SIG
 - Fox Chase
 - Dartmouth
- MIAME: the microarray experience
 - Nature Genetics 29: 365, 2001

30 of 26

[The end]